Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
94 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
24 tokens/sec
GPT-4o
103 tokens/sec
DeepSeek R1 via Azure Premium
93 tokens/sec
GPT OSS 120B via Groq Premium
462 tokens/sec
Kimi K2 via Groq Premium
254 tokens/sec
2000 character limit reached

Building a Multivariate Time Series Benchmarking Datasets Inspired by Natural Language Processing (NLP) (2410.10687v1)

Published 14 Oct 2024 in cs.CL and cs.AI

Abstract: Time series analysis has become increasingly important in various domains, and developing effective models relies heavily on high-quality benchmark datasets. Inspired by the success of NLP benchmark datasets in advancing pre-trained models, we propose a new approach to create a comprehensive benchmark dataset for time series analysis. This paper explores the methodologies used in NLP benchmark dataset creation and adapts them to the unique challenges of time series data. We discuss the process of curating diverse, representative, and challenging time series datasets, highlighting the importance of domain relevance and data complexity. Additionally, we investigate multi-task learning strategies that leverage the benchmark dataset to enhance the performance of time series models. This research contributes to the broader goal of advancing the state-of-the-art in time series modeling by adopting successful strategies from the NLP domain.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.