Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 26 tok/s Pro
GPT-4o 86 tok/s
GPT OSS 120B 452 tok/s Pro
Kimi K2 211 tok/s Pro
2000 character limit reached

Variational autoencoders with latent high-dimensional steady geometric flows for dynamics (2410.10137v4)

Published 14 Oct 2024 in cs.LG, math.DG, stat.CO, and stat.ML

Abstract: We develop Riemannian approaches to variational autoencoders (VAEs) for PDE-type ambient data with regularizing geometric latent dynamics, which we refer to as VAE-DLM, or VAEs with dynamical latent manifolds. We redevelop the VAE framework such that manifold geometries, subject to our geometric flow, embedded in Euclidean space are learned in the intermediary latent space developed by encoders and decoders. By tailoring the geometric flow in which the latent space evolves, we induce latent geometric properties of our choosing, which are reflected in empirical performance. We reformulate the traditional evidence lower bound (ELBO) loss with a considerate choice of prior. We develop a linear geometric flow with a steady-state regularizing term. This flow requires only automatic differentiation of one time derivative, and can be solved in moderately high dimensions in a physics-informed approach, allowing more expressive latent representations. We discuss how this flow can be formulated as a gradient flow, and maintains entropy away from metric singularity. This, along with an eigenvalue penalization condition, helps ensure the manifold is sufficiently large in measure, nondegenerate, and a canonical geometry, which contribute to a robust representation. Our methods focus on the modified multi-layer perceptron architecture with tanh activations for the manifold encoder-decoder. We demonstrate, on our datasets of interest, our methods perform at least as well as the traditional VAE, and oftentimes better. Our methods can outperform this and a VAE endowed with our proposed architecture, frequently reducing out-of-distribution (OOD) error between 15% to 35% on select datasets. We highlight our method on ambient PDEs whose solutions maintain minimal variation in late times. We provide empirical justification towards how we can improve robust learning for external dynamics with VAEs.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)