Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sobolev regularity of the Bergman and Szegö projections in terms of $\overline{\partial}\oplus\overline{\partial}^{*}$ and $\overline{\partial}_{b}\oplus\overline{\partial}_{b}^{*}$ (2410.09996v1)

Published 13 Oct 2024 in math.CV

Abstract: Let $\Omega$ be a smooth bounded pseudoconvex domain in $\mathbb{C}{n}$. It is shown that for $0\leq q\leq n$, $s\geq 0$, the embedding $j_{q}: dom(\overline{\partial})\cap dom(\overline{\partial}{*}) \hookrightarrow L{2}_{(0,q)}(\Omega)$ is continuous in $W{s}(\Omega)$--norms if and only if the Bergman projection $P_{q}$ is (see below for the modification needed for $j_{0}$). The analogous result for the operators on the boundary is also proved (for $n\geq 3$). In particular, $j_{1}$ is always regular in Sobolev norms in $\mathbb{C}{2}$, notwithstanding the fact that $N_{1}$ need not be.

Summary

We haven't generated a summary for this paper yet.