2000 character limit reached
On compactness and $L^p$-regularity in the $\overline{\partial}$-Neumann problem (2009.13391v2)
Published 28 Sep 2020 in math.CV
Abstract: Let $\Omega$ be a $C4$-smooth bounded pseudoconvex domain in $\mathbb{C}2$. We show that if the $\overline{\partial}$-Neumann operator $N_1$ is compact on $L2_{(0,1)}(\Omega)$ then the embedding operator $\mathcal{J}:Dom(\overline{\partial})\cap Dom(\overline{\partial}*) \to L2_{(0,1)}(\Omega)$ is $Lp$-regular for all $2\leq p<\infty$.