Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Towards a Domain-Specific Modelling Environment for Reinforcement Learning (2410.09368v1)

Published 12 Oct 2024 in cs.SE and cs.AI

Abstract: In recent years, machine learning technologies have gained immense popularity and are being used in a wide range of domains. However, due to the complexity associated with machine learning algorithms, it is a challenge to make it user-friendly, easy to understand and apply. Machine learning applications are especially challenging for users who do not have proficiency in this area. In this paper, we use model-driven engineering (MDE) methods and tools for developing a domain-specific modelling environment to contribute towards providing a solution for this problem. We targeted reinforcement learning from the machine learning domain, and evaluated the proposed language, reinforcement learning modelling language (RLML), with multiple applications. The tool supports syntax-directed editing, constraint checking, and automatic generation of code from RLML models. The environment also provides support for comparing results generated with multiple RL algorithms. With our proposed MDE approach, we were able to help in abstracting reinforcement learning technologies and improve the learning curve for RL users.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.