Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 109 tok/s
GPT OSS 120B 477 tok/s Pro
Kimi K2 222 tok/s Pro
2000 character limit reached

REDO: Execution-Free Runtime Error Detection for COding Agents (2410.09117v1)

Published 10 Oct 2024 in cs.SE and cs.AI

Abstract: As LLM-based agents exhibit exceptional capabilities in addressing complex problems, there is a growing focus on developing coding agents to tackle increasingly sophisticated tasks. Despite their promising performance, these coding agents often produce programs or modifications that contain runtime errors, which can cause code failures and are difficult for static analysis tools to detect. Enhancing the ability of coding agents to statically identify such errors could significantly improve their overall performance. In this work, we introduce Execution-free Runtime Error Detection for COding Agents (REDO), a method that integrates LLMs with static analysis tools to detect runtime errors for coding agents, without code execution. Additionally, we propose a benchmark task, SWE-Bench-Error-Detection (SWEDE), based on SWE-Bench (lite), to evaluate error detection in repository-level problems with complex external dependencies. Finally, through both quantitative and qualitative analyses across various error detection tasks, we demonstrate that REDO outperforms current state-of-the-art methods by achieving a 11.0% higher accuracy and 9.1% higher weighted F1 score; and provide insights into the advantages of incorporating LLMs for error detection.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com