Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 96 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Kimi K2 189 tok/s Pro
2000 character limit reached

Learning to learn ecosystems from limited data -- a meta-learning approach (2410.07368v1)

Published 2 Oct 2024 in q-bio.QM, cs.LG, and nlin.CD

Abstract: A fundamental challenge in developing data-driven approaches to ecological systems for tasks such as state estimation and prediction is the paucity of the observational or measurement data. For example, modern machine-learning techniques such as deep learning or reservoir computing typically require a large quantity of data. Leveraging synthetic data from paradigmatic nonlinear but non-ecological dynamical systems, we develop a meta-learning framework with time-delayed feedforward neural networks to predict the long-term behaviors of ecological systems as characterized by their attractors. We show that the framework is capable of accurately reconstructing the ``dynamical climate'' of the ecological system with limited data. Three benchmark population models in ecology, namely the Hastings-Powell model, a three-species food chain, and the Lotka-Volterra system, are used to demonstrate the performance of the meta-learning based prediction framework. In all cases, enhanced accuracy and robustness are achieved using five to seven times less training data as compared with the corresponding machine-learning method trained solely from the ecosystem data. A number of issues affecting the prediction performance are addressed.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.