Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 29 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Dual Stream Graph Transformer Fusion Networks for Enhanced Brain Decoding (2410.07189v1)

Published 23 Sep 2024 in eess.SP, cs.LG, and q-bio.NC

Abstract: This paper presents the novel Dual Stream Graph-Transformer Fusion (DS-GTF) architecture designed specifically for classifying task-based Magnetoencephalography (MEG) data. In the spatial stream, inputs are initially represented as graphs, which are then passed through graph attention networks (GAT) to extract spatial patterns. Two methods, TopK and Thresholded Adjacency are introduced for initializing the adjacency matrix used in the GAT. In the temporal stream, the Transformer Encoder receives concatenated windowed input MEG data and learns new temporal representations. The learned temporal and spatial representations from both streams are fused before reaching the output layer. Experimental results demonstrate an enhancement in classification performance and a reduction in standard deviation across multiple test subjects compared to other examined models.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.