Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 229 tok/s Pro
2000 character limit reached

Learning to Drift in Extreme Turning with Active Exploration and Gaussian Process Based MPC (2410.05740v3)

Published 8 Oct 2024 in cs.RO, cs.AI, cs.SY, and eess.SY

Abstract: Extreme cornering in racing often leads to large sideslip angles, presenting a significant challenge for vehicle control. Conventional vehicle controllers struggle to manage this scenario, necessitating the use of a drifting controller. However, the large sideslip angle in drift conditions introduces model mismatch, which in turn affects control precision. To address this issue, we propose a model correction drift controller that integrates Model Predictive Control (MPC) with Gaussian Process Regression (GPR). GPR is employed to correct vehicle model mismatches during both drift equilibrium solving and the MPC optimization process. Additionally, the variance from GPR is utilized to actively explore different cornering drifting velocities, aiming to minimize trajectory tracking errors. The proposed algorithm is validated through simulations on the Simulink-Carsim platform and experiments with a 1:10 scale RC vehicle. In the simulation, the average lateral error with GPR is reduced by 52.8% compared to the non-GPR case. Incorporating exploration further decreases this error by 27.1%. The velocity tracking Root Mean Square Error (RMSE) also decreases by 10.6% with exploration. In the RC car experiment, the average lateral error with GPR is 36.7% lower, and exploration further leads to a 29.0% reduction. Moreover, the velocity tracking RMSE decreases by 7.2% with the inclusion of exploration.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.