Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 104 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Learning Equilibria in Adversarial Team Markov Games: A Nonconvex-Hidden-Concave Min-Max Optimization Problem (2410.05673v1)

Published 8 Oct 2024 in cs.GT

Abstract: We study the problem of learning a Nash equilibrium (NE) in Markov games which is a cornerstone in multi-agent reinforcement learning (MARL). In particular, we focus on infinite-horizon adversarial team Markov games (ATMGs) in which agents that share a common reward function compete against a single opponent, the adversary. These games unify two-player zero-sum Markov games and Markov potential games, resulting in a setting that encompasses both collaboration and competition. Kalogiannis et al. (2023a) provided an efficient equilibrium computation algorithm for ATMGs which presumes knowledge of the reward and transition functions and has no sample complexity guarantees. We contribute a learning algorithm that utilizes MARL policy gradient methods with iteration and sample complexity that is polynomial in the approximation error $\epsilon$ and the natural parameters of the ATMG, resolving the main caveats of the solution by (Kalogiannis et al., 2023a). It is worth noting that previously, the existence of learning algorithms for NE was known for Markov two-player zero-sum and potential games but not for ATMGs. Seen through the lens of min-max optimization, computing a NE in these games consists a nonconvex-nonconcave saddle-point problem. Min-max optimization has received extensive study. Nevertheless, the case of nonconvex-nonconcave landscapes remains elusive: in full generality, finding saddle-points is computationally intractable (Daskalakis et al., 2021). We circumvent the aforementioned intractability by developing techniques that exploit the hidden structure of the objective function via a nonconvex-concave reformulation. However, this introduces the challenge of a feasibility set with coupled constraints. We tackle these challenges by establishing novel techniques for optimizing weakly-smooth nonconvex functions, extending the framework of (Devolder et al., 2014).

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.