Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Is the Future of Materials Amorphous? Challenges and Opportunities in Simulations of Amorphous Materials (2410.05035v2)

Published 7 Oct 2024 in cond-mat.dis-nn

Abstract: Amorphous solids form an enormous and underutilized class of materials. In order to drive the discovery of new useful amorphous materials further we need to achieve a closer convergence between computational and experimental methods. In this review, we highlight some of the important gaps between computational simulations and experiments, discuss popular state-of-the-art computational techniques such as the Activation Relaxation Technique nouveau (ARTn) and Reverse Monte Carlo (RMC), and introduce more recent advances: machine learning interatomic potentials (MLIPs) and generative machine learning for simulations of amorphous matter, e.g., the Morphological Autoregressive Protocol (MAP). Examples are drawn from the amorphous silicon and silica literature as well as from molecular glasses. Our outlook stresses the need for new computational methods to extend the time- and length- scales accessible through numerical simulations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.