Papers
Topics
Authors
Recent
Search
2000 character limit reached

QKAN: Quantum Kolmogorov-Arnold Networks

Published 6 Oct 2024 in quant-ph | (2410.04435v1)

Abstract: The potential of learning models in quantum hardware remains an open question. Yet, the field of quantum machine learning persistently explores how these models can take advantage of quantum implementations. Recently, a new neural network architecture, called Kolmogorov-Arnold Networks (KAN), has emerged, inspired by the compositional structure of the Kolmogorov-Arnold representation theorem. In this work, we design a quantum version of KAN called QKAN. Our QKAN exploits powerful quantum linear algebra tools, including quantum singular value transformation, to apply parameterized activation functions on the edges of the network. QKAN is based on block-encodings, making it inherently suitable for direct quantum input. Furthermore, we analyze its asymptotic complexity, building recursively from a single layer to an end-to-end neural architecture. The gate complexity of QKAN scales linearly with the cost of constructing block-encodings for input and weights, suggesting broad applicability in tasks with high-dimensional input. QKAN serves as a trainable quantum machine learning model by combining parameterized quantum circuits with established quantum subroutines. Lastly, we propose a multivariate state preparation strategy based on the construction of the QKAN architecture.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.