Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

Latent Action Priors for Locomotion with Deep Reinforcement Learning (2410.03246v2)

Published 4 Oct 2024 in cs.RO and cs.AI

Abstract: Deep Reinforcement Learning (DRL) enables robots to learn complex behaviors through interaction with the environment. However, due to the unrestricted nature of the learning algorithms, the resulting solutions are often brittle and appear unnatural. This is especially true for learning direct joint-level torque control, as inductive biases are difficult to integrate into the learning process. We propose an inductive bias for learning locomotion that is especially useful for torque control: latent actions learned from a small dataset of expert demonstrations. This prior allows the policy to directly leverage knowledge contained in the expert's actions and facilitates more efficient exploration. We observe that the agent is not restricted to the reward levels of the demonstration, and performance in transfer tasks is improved significantly. Latent action priors combined with style rewards for imitation lead to a closer replication of the expert's behavior. Videos and code are available at https://sites.google.com/view/latent-action-priors.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.