Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Physics-Informed Graph-Mesh Networks for PDEs: A hybrid approach for complex problems (2410.02819v1)

Published 25 Sep 2024 in math.NA, cs.LG, and cs.NA

Abstract: The recent rise of deep learning has led to numerous applications, including solving partial differential equations using Physics-Informed Neural Networks. This approach has proven highly effective in several academic cases. However, their lack of physical invariances, coupled with other significant weaknesses, such as an inability to handle complex geometries or their lack of generalization capabilities, make them unable to compete with classical numerical solvers in industrial settings. In this work, a limitation regarding the use of automatic differentiation in the context of physics-informed learning is highlighted. A hybrid approach combining physics-informed graph neural networks with numerical kernels from finite elements is introduced. After studying the theoretical properties of our model, we apply it to complex geometries, in two and three dimensions. Our choices are supported by an ablation study, and we evaluate the generalisation capacity of the proposed approach.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.