Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NEAT: Nonlinear Parameter-efficient Adaptation of Pre-trained Models (2410.01870v2)

Published 2 Oct 2024 in cs.LG and cs.CL

Abstract: Fine-tuning pre-trained models often yields state-of-the-art performance but is computationally expensive when updating all parameters. Parameter-efficient fine-tuning (PEFT) methods, such as Low-Rank Adaptation (LoRA), address this by freezing pre-trained weights and introducing low-rank matrices. However, because LoRA relies on low-rank decomposition, it struggles to capture complex nonlinear dynamics and optimal optimization trajectories, resulting in a performance gap relative to full fine-tuning and inefficient parameter utilization. To overcome these issues, we propose NEAT, a nonlinear PEFT approach that employs a lightweight neural network to learn a nonlinear transformation of the pre-trained weights, thereby better approximating cumulative weight updates. Our theoretical analysis shows that NEAT achieves greater efficiency than LoRA while maintaining equivalent expressivity. Extensive experiments on four benchmarks and over twenty datasets demonstrate that NEAT significantly outperforms state-of-the-art baselines in both vision and text tasks.

Summary

We haven't generated a summary for this paper yet.