Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the topology and geometry of population-based SHM (2410.00923v1)

Published 30 Sep 2024 in stat.ML, cs.DB, cs.LG, and eess.SP

Abstract: Population-Based Structural Health Monitoring (PBSHM), aims to leverage information across populations of structures in order to enhance diagnostics on those with sparse data. The discipline of transfer learning provides the mechanism for this capability. One paper in PBSHM proposed a geometrical view in which the structures were represented as graphs in a metric "base space" with their data captured in the "total space" of a vector bundle above the graph space. This view was more suggestive than mathematically rigorous, although it did allow certain useful arguments. One bar to more rigorous analysis was the absence of a meaningful topology on the graph space, and thus no useful notion of continuity. The current paper aims to address this problem, by moving to parametric families of structures in the base space, essentially changing points in the graph space to open balls. This allows the definition of open sets in the fibre space and thus allows continuous variation between fibres. The new ideas motivate a new geometrical mechanism for transfer learning in data are transported from one fibre to an adjacent one; i.e., from one structure to another.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube