Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Stochastic Inverse Problem: stability, regularization and Wasserstein gradient flow (2410.00229v1)

Published 30 Sep 2024 in stat.ML, cs.LG, math.OC, and math.PR

Abstract: Inverse problems in physical or biological sciences often involve recovering an unknown parameter that is random. The sought-after quantity is a probability distribution of the unknown parameter, that produces data that aligns with measurements. Consequently, these problems are naturally framed as stochastic inverse problems. In this paper, we explore three aspects of this problem: direct inversion, variational formulation with regularization, and optimization via gradient flows, drawing parallels with deterministic inverse problems. A key difference from the deterministic case is the space in which we operate. Here, we work within probability space rather than Euclidean or Sobolev spaces, making tools from measure transport theory necessary for the study. Our findings reveal that the choice of metric -- both in the design of the loss function and in the optimization process -- significantly impacts the stability and properties of the optimizer.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.