Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
48 tokens/sec
GPT-5 Medium
15 tokens/sec
GPT-5 High Premium
23 tokens/sec
GPT-4o
104 tokens/sec
DeepSeek R1 via Azure Premium
77 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
201 tokens/sec
2000 character limit reached

Neural Decompiling of Tracr Transformers (2410.00061v1)

Published 29 Sep 2024 in cs.LG and cs.AI

Abstract: Recently, the transformer architecture has enabled substantial progress in many areas of pattern recognition and machine learning. However, as with other neural network models, there is currently no general method available to explain their inner workings. The present paper represents a first step towards this direction. We utilize \textit{Transformer Compiler for RASP} (Tracr) to generate a large dataset of pairs of transformer weights and corresponding RASP programs. Based on this dataset, we then build and train a model, with the aim of recovering the RASP code from the compiled model. We demonstrate that the simple form of Tracr compiled transformer weights is interpretable for such a decompiler model. In an empirical evaluation, our model achieves exact reproductions on more than 30\% of the test objects, while the remaining 70\% can generally be reproduced with only few errors. Additionally, more than 70\% of the programs, produced by our model, are functionally equivalent to the ground truth, and therefore a valid decompilation of the Tracr compiled transformer weights.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.