Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Kimi K2 210 tok/s Pro
2000 character limit reached

Benchmarking Adaptive Intelligence and Computer Vision on Human-Robot Collaboration (2409.19856v1)

Published 30 Sep 2024 in cs.RO, cs.CV, cs.HC, and cs.LG

Abstract: Human-Robot Collaboration (HRC) is vital in Industry 4.0, using sensors, digital twins, collaborative robots (cobots), and intention-recognition models to have efficient manufacturing processes. However, Concept Drift is a significant challenge, where robots struggle to adapt to new environments. We address concept drift by integrating Adaptive Intelligence and self-labeling (SLB) to improve the resilience of intention-recognition in an HRC system. Our methodology begins with data collection using cameras and weight sensors, which is followed by annotation of intentions and state changes. Then we train various deep learning models with different preprocessing techniques for recognizing and predicting the intentions. Additionally, we developed a custom state detection algorithm for enhancing the accuracy of SLB, offering precise state-change definitions and timestamps to label intentions. Our results show that the MViT2 model with skeletal posture preprocessing achieves an accuracy of 83% on our data environment, compared to the 79% accuracy of MViT2 without skeleton posture extraction. Additionally, our SLB mechanism achieves a labeling accuracy of 91%, reducing a significant amount of time that would've been spent on manual annotation. Lastly, we observe swift scaling of model performance that combats concept drift by fine tuning on different increments of self-labeled data in a shifted domain that has key differences from the original training environment.. This study demonstrates the potential for rapid deployment of intelligent cobots in manufacturing through the steps shown in our methodology, paving a way for more adaptive and efficient HRC systems.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.