Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Instruction Embedding: Latent Representations of Instructions Towards Task Identification (2409.19680v1)

Published 29 Sep 2024 in cs.CL and cs.AI

Abstract: Instruction data is crucial for improving the capability of LLMs to align with human-level performance. Recent research LIMA demonstrates that alignment is essentially a process where the model adapts instructions' interaction style or format to solve various tasks, leveraging pre-trained knowledge and skills. Therefore, for instructional data, the most important aspect is the task it represents, rather than the specific semantics and knowledge information. The latent representations of instructions play roles for some instruction-related tasks like data selection and demonstrations retrieval. However, they are always derived from text embeddings, encompass overall semantic information that influences the representation of task categories. In this work, we introduce a new concept, instruction embedding, and construct Instruction Embedding Benchmark (IEB) for its training and evaluation. Then, we propose a baseline Prompt-based Instruction Embedding (PIE) method to make the representations more attention on tasks. The evaluation of PIE, alongside other embedding methods on IEB with two designed tasks, demonstrates its superior performance in accurately identifying task categories. Moreover, the application of instruction embeddings in four downstream tasks showcases its effectiveness and suitability for instruction-related tasks.

Summary

We haven't generated a summary for this paper yet.