Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

SymILO: A Symmetry-Aware Learning Framework for Integer Linear Optimization (2409.19678v3)

Published 29 Sep 2024 in math.OC

Abstract: Integer linear programs (ILPs) are commonly employed to model diverse practical problems such as scheduling and planning. Recently, machine learning techniques have been utilized to solve ILPs. A straightforward idea is to train a model via supervised learning, with an ILP as the input and an optimal solution as the label. An ILP is symmetric if its variables can be permuted without changing the problem structure, resulting in numerous equivalent and optimal solutions. Randomly selecting an optimal solution as the label can introduce variability in the training data, which may hinder the model from learning stable patterns. In this work, we incorporate the intrinsic symmetry of ILPs and propose a novel training framework called SymILO. Specifically, we modify the learning task by introducing solution permutation along with neural network weights as learnable parameters and then design an alternating algorithm to jointly optimize the loss function. We conduct extensive experiments on ILPs involving different symmetries and the computational results demonstrate that our symmetry-aware approach significantly outperforms three existing methods -- achieving $50.3\%$, $66.5\%$, and $45.4\%$ average improvements, respectively.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.