Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

In-depth Analysis of Privacy Threats in Federated Learning for Medical Data (2409.18907v1)

Published 27 Sep 2024 in cs.LG

Abstract: Federated learning is emerging as a promising machine learning technique in the medical field for analyzing medical images, as it is considered an effective method to safeguard sensitive patient data and comply with privacy regulations. However, recent studies have revealed that the default settings of federated learning may inadvertently expose private training data to privacy attacks. Thus, the intensity of such privacy risks and potential mitigation strategies in the medical domain remain unclear. In this paper, we make three original contributions to privacy risk analysis and mitigation in federated learning for medical data. First, we propose a holistic framework, MedPFL, for analyzing privacy risks in processing medical data in the federated learning environment and developing effective mitigation strategies for protecting privacy. Second, through our empirical analysis, we demonstrate the severe privacy risks in federated learning to process medical images, where adversaries can accurately reconstruct private medical images by performing privacy attacks. Third, we illustrate that the prevalent defense mechanism of adding random noises may not always be effective in protecting medical images against privacy attacks in federated learning, which poses unique and pressing challenges related to protecting the privacy of medical data. Furthermore, the paper discusses several unique research questions related to the privacy protection of medical data in the federated learning environment. We conduct extensive experiments on several benchmark medical image datasets to analyze and mitigate the privacy risks associated with federated learning for medical data.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube