REAL: Response Embedding-based Alignment for LLMs (2409.17169v4)
Abstract: Aligning LLMs to human preferences is a crucial step in building helpful and safe AI tools, which usually involve training on supervised datasets. Popular algorithms such as Direct Preference Optimization (DPO) rely on pairs of AI-generated responses ranked according to human annotation. The response pair annotation process might bring human bias. Building a correct preference dataset is the costly part of the alignment pipeline. To improve annotation efficiency and quality in the LLMs alignment, we propose REAL: Response Embedding-based Alignment for LLMs, a strategy for constructing a high-quality training dataset that focuses on acquiring the less ambiguous preference pairs for labeling out of a set of response candidates. Our selection process is based on the similarity of embedding responses independently of prompts, which guarantees the selection process in an off-policy setting, avoiding adaptively measuring the similarity during the training. Experimental results on real-world dataset SHP2 and synthetic HH-RLHF benchmarks indicate that choosing dissimilar response pairs enhances the direct alignment of LLMs while reducing inherited labeling errors. The model aligned with dissimilar response pairs obtained a better margin and win rate on the dialogue task. Our findings suggest that focusing on distinct pairs can reduce the label error and improve LLM alignment efficiency, saving up to $65\%$ of annotators' work.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.