Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

PACE: Poisoning Attacks on Learned Cardinality Estimation (2409.15990v1)

Published 24 Sep 2024 in cs.DB and cs.CR

Abstract: Cardinality estimation (CE) plays a crucial role in database optimizer. We have witnessed the emergence of numerous learned CE models recently which can outperform traditional methods such as histograms and samplings. However, learned models also bring many security risks. For example, a query-driven learned CE model learns a query-to-cardinality mapping based on the historical workload. Such a learned model could be attacked by poisoning queries, which are crafted by malicious attackers and woven into the historical workload, leading to performance degradation of CE. In this paper, we explore the potential security risks in learned CE and study a new problem of poisoning attacks on learned CE in a black-box setting. Experiments show that PACE reduces the accuracy of the learned CE models by 178 times, leading to a 10 times decrease in the end-to-end performance of the target database.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com