Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 19 tok/s
GPT-5 High 18 tok/s Pro
GPT-4o 96 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 26 tok/s Pro
2000 character limit reached

A Comparative Study on State-Action Spaces for Learning Viewpoint Selection and Manipulation with Diffusion Policy (2409.14615v2)

Published 22 Sep 2024 in cs.RO

Abstract: Robotic manipulation tasks often rely on static cameras for perception, which can limit flexibility, particularly in scenarios like robotic surgery and cluttered environments where mounting static cameras is impractical. Ideally, robots could jointly learn a policy for dynamic viewpoint and manipulation. However, it remains unclear which state-action space is most suitable for this complex learning process. To enable manipulation with dynamic viewpoints and to better understand impacts from different state-action spaces on this policy learning process, we conduct a comparative study on the state-action spaces for policy learning and their impacts on the performance of visuomotor policies that integrate viewpoint selection with manipulation. Specifically, we examine the configuration space of the robotic system, the end-effector space with a dual-arm Inverse Kinematics (IK) solver, and the reduced end-effector space with a look-at IK solver to optimize rotation for viewpoint selection. We also assess variants with different rotation representations. Our results demonstrate that state-action spaces utilizing Euler angles with the look-at IK achieve superior task success rates compared to other spaces. Further analysis suggests that these performance differences are driven by inherent variations in the high-frequency components across different state-action spaces and rotation representations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube