Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Structure Learning via Mutual Information (2409.14235v1)

Published 21 Sep 2024 in cs.LG, cs.IT, and math.IT

Abstract: This paper presents a novel approach to machine learning algorithm design based on information theory, specifically mutual information (MI). We propose a framework for learning and representing functional relationships in data using MI-based features. Our method aims to capture the underlying structure of information in datasets, enabling more efficient and generalizable learning algorithms. We demonstrate the efficacy of our approach through experiments on synthetic and real-world datasets, showing improved performance in tasks such as function classification, regression, and cross-dataset transfer. This work contributes to the growing field of metalearning and automated machine learning, offering a new perspective on how to leverage information theory for algorithm design and dataset analysis and proposing new mutual information theoretic foundations to learning algorithms.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)