Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

FedAT: Federated Adversarial Training for Distributed Insider Threat Detection (2409.13083v1)

Published 19 Sep 2024 in cs.CR, cs.AI, and cs.DC

Abstract: Insider threats usually occur from within the workplace, where the attacker is an entity closely associated with the organization. The sequence of actions the entities take on the resources to which they have access rights allows us to identify the insiders. Insider Threat Detection (ITD) using Machine Learning (ML)-based approaches gained attention in the last few years. However, most techniques employed centralized ML methods to perform such an ITD. Organizations operating from multiple locations cannot contribute to the centralized models as the data is generated from various locations. In particular, the user behavior data, which is the primary source of ITD, cannot be shared among the locations due to privacy concerns. Additionally, the data distributed across various locations result in extreme class imbalance due to the rarity of attacks. Federated Learning (FL), a distributed data modeling paradigm, gained much interest recently. However, FL-enabled ITD is not yet explored, and it still needs research to study the significant issues of its implementation in practical settings. As such, our work investigates an FL-enabled multiclass ITD paradigm that considers non-Independent and Identically Distributed (non-IID) data distribution to detect insider threats from different locations (clients) of an organization. Specifically, we propose a Federated Adversarial Training (FedAT) approach using a generative model to alleviate the extreme data skewness arising from the non-IID data distribution among the clients. Besides, we propose to utilize a Self-normalized Neural Network-based Multi-Layer Perceptron (SNN-MLP) model to improve ITD. We perform comprehensive experiments and compare the results with the benchmarks to manifest the enhanced performance of the proposed FedATdriven ITD scheme.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube