Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Knowledge Distillation of Large Language Models through Efficient Multi-Modal Distribution Alignment (2409.12545v2)

Published 19 Sep 2024 in cs.CL

Abstract: Knowledge distillation (KD) is an effective model compression method that can transfer the internal capabilities of LLMs to smaller ones. However, the multi-modal probability distribution predicted by teacher LLMs causes difficulties for student models to learn. In this paper, we first demonstrate the importance of multi-modal distribution alignment with experiments and then highlight the inefficiency of existing KD approaches in learning multi-modal distributions. To address this problem, we propose Ranking Loss based Knowledge Distillation (RLKD), which encourages the consistency of the ranking of peak predictions between the teacher and student models. By incorporating word-level ranking loss, we ensure excellent compatibility with existing distillation objectives while fully leveraging the fine-grained information between different categories in peaks of two predicted distribution. Experimental results demonstrate that our method enables the student model to better learn the multi-modal distributions of the teacher model, leading to a significant performance improvement in various downstream tasks.

Summary

We haven't generated a summary for this paper yet.