Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Heckman Selection Contaminated Normal Model (2409.12348v1)

Published 18 Sep 2024 in stat.ME

Abstract: The Heckman selection model is one of the most well-renounced econometric models in the analysis of data with sample selection. This model is designed to rectify sample selection biases based on the assumption of bivariate normal error terms. However, real data diverge from this assumption in the presence of heavy tails and/or atypical observations. Recently, this assumption has been relaxed via a more flexible Student's t-distribution, which has appealing statistical properties. This paper introduces a novel Heckman selection model using a bivariate contaminated normal distribution for the error terms. We present an efficient ECM algorithm for parameter estimation with closed-form expressions at the E-step based on truncated multinormal distribution formulas. The identifiability of the proposed model is also discussed, and its properties have been examined. Through simulation studies, we compare our proposed model with the normal and Student's t counterparts and investigate the finite-sample properties and the variation in missing rate. Results obtained from two real data analyses showcase the usefulness and effectiveness of our model. The proposed algorithms are implemented in the R package HeckmanEM.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.