Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Learning-based Controller for Multi-Contact Grasps on Unknown Objects with a Dexterous Hand (2409.12339v1)

Published 18 Sep 2024 in cs.RO

Abstract: Existing grasp controllers usually either only support finger-tip grasps or need explicit configuration of the inner forces. We propose a novel grasp controller that supports arbitrary grasp types, including power grasps with multi-contacts, while operating self-contained on before unseen objects. No detailed contact information is needed, but only a rough 3D model, e.g., reconstructed from a single depth image. First, the external wrench being applied to the object is estimated by using the measured torques at the joints. Then, the torques necessary to counteract the estimated wrench while keeping the object at its initial pose are predicted. The torques are commanded via desired joint angles to an underlying joint-level impedance controller. To reach real-time performance, we propose a learning-based approach that is based on a wrench estimator- and a torque predictor neural network. Both networks are trained in a supervised fashion using data generated via the analytical formulation of the controller. In an extensive simulation-based evaluation, we show that our controller is able to keep 83.1% of the tested grasps stable when applying external wrenches with up to 10N. At the same time, we outperform the two tested baselines by being more efficient and inducing less involuntary object movement. Finally, we show that the controller also works on the real DLR-Hand II, reaching a cycle time of 6ms.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube