Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Uniform resolvent estimates, smoothing effects and spectral stability for the Heisenberg sublaplacian (2409.11943v1)

Published 18 Sep 2024 in math.AP and math.SP

Abstract: We establish global bounds for solutions to stationary and time-dependent Schr\"odinger equations associated with the sublaplacian $\mathcal L$ on the Heisenberg group, as well as its pure fractional power $\mathcal Ls$ and conformally invariant fractional power $\mathcal L_s$. The main ingredient is a new abstract uniform weighted resolvent estimate which is proved by using the method of weakly conjugate operators -- a variant of Mourre's commutator method -- and Hardy's type inequalities on the Heisenberg group. As applications, we show Kato-type smoothing effects for the time-dependent Schr\"odinger equation, and spectral stability of the sublaplacian perturbed by complex-valued decaying potentials satisfying an explicit subordination condition. In the local case $s=1$, we obtain uniform estimates without any symmetry or derivative loss, which improve previous results.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.