Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Representation theory of Gaussian unitary transformations for bosonic and fermionic systems (2409.11628v1)

Published 18 Sep 2024 in quant-ph, cond-mat.quant-gas, cond-mat.str-el, hep-th, math-ph, and math.MP

Abstract: Gaussian unitary transformations are generated by quadratic Hamiltonians, i.e., Hamiltonians containing quadratic terms in creations and annihilation operators, and are heavily used in many areas of quantum physics, ranging from quantum optics and condensed matter theory to quantum information and quantum field theory in curved spacetime. They are known to form a representation of the metaplectic and spin group for bosons and fermions, respectively. These groups are the double covers of the symplectic and special orthogonal group, respectively, and our goal is to analyze the behavior of the sign ambiguity that one needs to deal with when moving between these groups and their double cover. We relate this sign ambiguity to expectation values of the form $\langle 0|\exp{(-i\hat{H})}|0\rangle$, where $|0\rangle$ is a Gaussian state and $\hat{H}$ an arbitrary quadratic Hamiltonian. We provide closed formulas for $\langle 0|\exp{(-i\hat{H})}|0\rangle$ and show how we can efficiently describe group multiplications in the double cover without the need of going to a faithful representation on an exponentially large or even infinite-dimensional space. Our construction relies on an explicit parametrization of these two groups (metaplectic, spin) in terms of symplectic and orthogonal group elements together with a twisted U(1) group.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.