Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Comparison principle for general nonlocal Hamilton-Jacobi equations with superlinear gradient (2409.11124v1)

Published 17 Sep 2024 in math.AP

Abstract: We obtain the comparison principle for discontinuous viscosity sub- and supersolutions of nonlocal Hamilton-Jacobi equations, with superlinear and coercive gradient terms. The nonlocal terms are integro-differential operators in L\'evy form, with general measures: $x$-dependent, possibly degenerate and without any restriction on the order. The measures must satisfy a combined Wasserstein/Total Variation-continuity assumption, which is one of the weakest conditions used in the context of viscosity approach for this type of integro-differential PDEs. The proof relies on a regularizing effect due to the gradient growth. We present several examples of applications to PDEs with different types of nonlocal operators (measures with density, operators of variable order, L\'evy-It^o operators).

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.