Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Bayesian Optimal Experimental Design for Robot Kinematic Calibration (2409.10802v3)

Published 17 Sep 2024 in cs.RO

Abstract: This paper develops a Bayesian optimal experimental design for robot kinematic calibration on ${\mathbb{S}3 !\times! \mathbb{R}3}$. Our method builds upon a Gaussian process approach that incorporates a geometry-aware kernel based on Riemannian Mat\'ern kernels over ${\mathbb{S}3}$. To learn the forward kinematics errors via Bayesian optimization with a Gaussian process, we define a geodesic distance-based objective function. Pointwise values of this function are sampled via noisy measurements taken using fiducial markers on the end-effector using a camera and computed pose with the nominal kinematics. The corrected Denavit-Hartenberg parameters are obtained using an efficient quadratic program that operates on the collected data sets. The effectiveness of the proposed method is demonstrated via simulations and calibration experiments on NASA's ocean world lander autonomy testbed (OWLAT).

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.