Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On a Generalization of Heyting Algebras II (2409.10642v1)

Published 16 Sep 2024 in math.LO

Abstract: A $\nabla$-algebra is a natural generalization of a Heyting algebra, unifying several algebraic structures, including bounded lattices, Heyting algebras, temporal Heyting algebras, and the algebraic representation of dynamic topological systems. In the prequel to this paper [3], we explored the algebraic properties of various varieties of $\nabla$-algebras, their subdirectly-irreducible and simple elements, their closure under Dedekind-MacNeille completion, and their Kripke-style representation. In this sequel, we first introduce $\nabla$-spaces as a common generalization of Priestley and Esakia spaces, through which we develop a duality theory for certain categories of $\nabla$-algebras. Then, we reframe these dualities in terms of spectral spaces and provide an algebraic characterization of natural families of dynamic topological systems over Priestley, Esakia, and spectral spaces. Additionally, we present a ring-theoretic representation for some families of $\nabla$-algebras. Finally, we introduce several logical systems to capture different varieties of $\nabla$-algebras, offering their algebraic, Kripke, topological, and ring-theoretic semantics, and establish a deductive interpolation theorem for some of these systems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube