Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Data-free Non-intrusive Model Reduction for Nonlinear Finite Element Models via Spectral Submanifolds (2409.10126v1)

Published 16 Sep 2024 in math.NA, cs.CE, cs.NA, and math.DS

Abstract: The theory of spectral submanifolds (SSMs) has emerged as a powerful tool for constructing rigorous, low-dimensional reduced-order models (ROMs) of high-dimensional nonlinear mechanical systems. A direct computation of SSMs requires explicit knowledge of nonlinear coefficients in the equations of motion, which limits their applicability to generic finite-element (FE) solvers. Here, we propose a non-intrusive algorithm for the computation of the SSMs and the associated ROMs up to arbitrary polynomial orders. This non-intrusive algorithm only requires system nonlinearity as a black box and hence, enables SSM-based model reduction via generic finite-element software. Our expressions and algorithms are valid for systems with up to cubic-order nonlinearities, including velocity-dependent nonlinear terms, asymmetric damping, and stiffness matrices, and hence work for a large class of mechanics problems. We demonstrate the effectiveness of the proposed non-intrusive approach over a variety of FE examples of increasing complexity, including a micro-resonator FE model containing more than a million degrees of freedom.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube