A Non-Linear Model Predictive Task-Space Controller Satisfying Shape Constraints for Tendon-Driven Continuum Robots (2409.09970v1)
Abstract: Tendon-Driven Continuum Robots (TDCRs) have the potential to be used in minimally invasive surgery and industrial inspection, where the robot must enter narrow and confined spaces. We propose a Model Predictive Control (MPC) approach to leverage the non-linear kinematics and redundancy of TDCRs for whole-body collision avoidance, with real-time capabilities for handling inputs at 30Hz. Key to our method's effectiveness is the integration of a nominal Piecewise Constant Curvature (PCC) model for efficient computation of feasible trajectories, with a local feedback controller to handle modeling uncertainty and disturbances. Our experiments in simulation show that our MPC outperforms conventional Jacobian-based controller in position tracking, particularly under disturbances and user-defined shape constraints, while also allowing the incorporation of control limits. We further validate our method on a hardware prototype, showcasing its potential for enhancing the safety of teleoperation tasks.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.