Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

AutoIRT: Calibrating Item Response Theory Models with Automated Machine Learning (2409.08823v1)

Published 13 Sep 2024 in cs.LG and stat.AP

Abstract: Item response theory (IRT) is a class of interpretable factor models that are widely used in computerized adaptive tests (CATs), such as language proficiency tests. Traditionally, these are fit using parametric mixed effects models on the probability of a test taker getting the correct answer to a test item (i.e., question). Neural net extensions of these models, such as BertIRT, require specialized architectures and parameter tuning. We propose a multistage fitting procedure that is compatible with out-of-the-box Automated Machine Learning (AutoML) tools. It is based on a Monte Carlo EM (MCEM) outer loop with a two stage inner loop, which trains a non-parametric AutoML grade model using item features followed by an item specific parametric model. This greatly accelerates the modeling workflow for scoring tests. We demonstrate its effectiveness by applying it to the Duolingo English Test, a high stakes, online English proficiency test. We show that the resulting model is typically more well calibrated, gets better predictive performance, and more accurate scores than existing methods (non-explanatory IRT models and explanatory IRT models like BERT-IRT). Along the way, we provide a brief survey of machine learning methods for calibration of item parameters for CATs.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube