Papers
Topics
Authors
Recent
Search
2000 character limit reached

Reasoning Around Paradox with Grounded Deduction

Published 12 Sep 2024 in math.LO and cs.LO | (2409.08243v4)

Abstract: How can we reason around logical paradoxes without falling into them? This paper introduces grounded deduction or GD, a Kripke-inspired approach to first-order logic and arithmetic that is neither classical nor intuitionistic, but nevertheless appears both pragmatically usable and intuitively justifiable. GD permits the direct expression of unrestricted recursive definitions -- including paradoxical ones such as 'L := not L' -- while adding dynamic typing premises to certain inference rules so that such paradoxes do not lead to inconsistency. This paper constitutes a preliminary development and investigation of grounded deduction, to be extended with further elaboration and deeper analysis of its intriguing properties.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.