Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
42 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
12 tokens/sec
GPT-4o
92 tokens/sec
DeepSeek R1 via Azure Premium
92 tokens/sec
GPT OSS 120B via Groq Premium
480 tokens/sec
Kimi K2 via Groq Premium
195 tokens/sec
2000 character limit reached

Quantifying and Enabling the Interpretability of CLIP-like Models (2409.06579v1)

Published 10 Sep 2024 in cs.CV and cs.AI

Abstract: CLIP is one of the most popular foundational models and is heavily used for many vision-language tasks. However, little is known about the inner workings of CLIP. To bridge this gap we propose a study to quantify the interpretability in CLIP like models. We conduct this study on six different CLIP models from OpenAI and OpenCLIP which vary by size, type of pre-training data and patch size. Our approach begins with using the TEXTSPAN algorithm and in-context learning to break down individual attention heads into specific properties. We then evaluate how easily these heads can be interpreted using new metrics which measure property consistency within heads and property disentanglement across heads. Our findings reveal that larger CLIP models are generally more interpretable than their smaller counterparts. To further assist users in understanding the inner workings of CLIP models, we introduce CLIP-InterpreT, a tool designed for interpretability analysis. CLIP-InterpreT offers five types of analyses: property-based nearest neighbor search, per-head topic segmentation, contrastive segmentation, per-head nearest neighbors of an image, and per-head nearest neighbors of text.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets