Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Leveraging Content and Acoustic Representations for Speech Emotion Recognition (2409.05566v2)

Published 9 Sep 2024 in eess.AS

Abstract: Speech emotion recognition (SER), the task of identifying the expression of emotion from spoken content, is challenging due to the difficulty in extracting representations that capture emotional attributes from speech. The scarcity of labeled datasets further complicates the challenge where large models are prone to over-fitting. In this paper, we propose CARE (Content and Acoustic Representations of Emotions), where we design a dual encoding scheme which emphasizes semantic and acoustic factors of speech. While the semantic encoder is trained using distillation from utterance-level text representations, the acoustic encoder is trained to predict low-level frame-wise features of the speech signal. The proposed dual encoding scheme is a base-sized model trained only on unsupervised raw speech. With a simple light-weight classification model trained on the downstream task, we show that the CARE embeddings provide effective emotion recognition on a variety of datasets. We compare the proposal with several other self-supervised models as well as recent large-LLM based approaches. In these evaluations, the proposed CARE is shown to be the best performing model based on average performance across 8 diverse datasets. We also conduct several ablation studies to analyze the importance of various design choices.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com