Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning in Games with Progressive Hiding (2409.03875v3)

Published 5 Sep 2024 in cs.GT

Abstract: When learning to play an imperfect information game, it is often easier to first start with the basic mechanics of the game rules. For example, one can play several example rounds with private cards revealed to all players to better understand the basic actions and their effects. Building on this intuition, this paper introduces {\it progressive hiding}, an algorithm that balances learning the basic mechanics of an imperfect information game and satisfying the information constraints. Progressive hiding is inspired by methods from stochastic multistage optimization, such as scenario decomposition and progressive hedging. We prove that it enables the adaptation of counterfactual regret minimization to games where perfect recall is not satisfied. Numerical experiments illustrate that progressive hiding produces notable improvements in several settings.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.