Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Efficient Point Cloud Classification via Offline Distillation Framework and Negative-Weight Self-Distillation Technique (2409.02020v2)

Published 3 Sep 2024 in cs.CV

Abstract: The rapid advancement in point cloud processing technologies has significantly increased the demand for efficient and compact models that achieve high-accuracy classification. Knowledge distillation has emerged as a potent model compression technique. However, traditional KD often requires extensive computational resources for forward inference of large teacher models, thereby reducing training efficiency for student models and increasing resource demands. To address these challenges, we introduce an innovative offline recording strategy that avoids the simultaneous loading of both teacher and student models, thereby reducing hardware demands. This approach feeds a multitude of augmented samples into the teacher model, recording both the data augmentation parameters and the corresponding logit outputs. By applying shape-level augmentation operations such as random scaling and translation, while excluding point-level operations like random jittering, the size of the records is significantly reduced. Additionally, to mitigate the issue of small student model over-imitating the teacher model's outputs and converging to suboptimal solutions, we incorporate a negative-weight self-distillation strategy. Experimental results demonstrate that the proposed distillation strategy enables the student model to achieve performance comparable to state-of-the-art models while maintaining lower parameter count. This approach strikes an optimal balance between performance and complexity. This study highlights the potential of our method to optimize knowledge distillation for point cloud classification tasks, particularly in resource-constrained environments, providing a novel solution for efficient point cloud analysis.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube