Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Real Generalized Trisecant Trichotomy (2409.01356v1)

Published 2 Sep 2024 in math.AG

Abstract: The classical trisecant lemma says that a general chord of a non-degenerate space curve is not a trisecant; that is, the chord only meets the curve in two points. The generalized trisecant lemma extends the result to higher-dimensional varieties. It states that the linear space spanned by general points on a projective variety intersects the variety in exactly these points, provided the dimension of the linear space is smaller than the codimension of the variety and that the variety is irreducible, reduced, and non-degenerate. We prove a real analogue of the generalized trisecant lemma, which takes the form of a trichotomy. Along the way, we characterize the possible numbers of real intersection points between a real projective variety and a complimentary dimension real linear space. We show that any integer of correct parity between a minimum and a maximum number can be achieved. We then specialize to Segre-Veronese varieties, where our results apply to the identifiability of independent component analysis, tensor decomposition and to typical tensor ranks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube