Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 16 tok/s Pro
GPT-4o 105 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

Unveiling the Vulnerability of Private Fine-Tuning in Split-Based Frameworks for Large Language Models: A Bidirectionally Enhanced Attack (2409.00960v2)

Published 2 Sep 2024 in cs.CR

Abstract: Recent advancements in pre-trained LLMs have significantly influenced various domains. Adapting these models for specific tasks often involves fine-tuning (FT) with private, domain-specific data. However, privacy concerns keep this data undisclosed, and the computational demands for deploying LLMs pose challenges for resource-limited data holders. This has sparked interest in split learning (SL), a Model-as-a-Service (MaaS) paradigm that divides LLMs into smaller segments for distributed training and deployment, transmitting only intermediate activations instead of raw data. SL has garnered substantial interest in both industry and academia as it aims to balance user data privacy, model ownership, and resource challenges in the private fine-tuning of LLMs. Despite its privacy claims, this paper reveals significant vulnerabilities arising from the combination of SL and LLM-FT: the Not-too-far property of fine-tuning and the auto-regressive nature of LLMs. Exploiting these vulnerabilities, we propose Bidirectional Semi-white-box Reconstruction (BiSR), the first data reconstruction attack (DRA) designed to target both the forward and backward propagation processes of SL. BiSR utilizes pre-trained weights as prior knowledge, combining a learning-based attack with a bidirectional optimization-based approach for highly effective data reconstruction. Additionally, it incorporates a Noise-adaptive Mixture of Experts (NaMoE) model to enhance reconstruction performance under perturbation. We conducted systematic experiments on various mainstream LLMs and different setups, empirically demonstrating BiSR's state-of-the-art performance. Furthermore, we thoroughly examined three representative defense mechanisms, showcasing our method's capability to reconstruct private data even in the presence of these defenses.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.