Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Convolutional Hierarchical Deep Learning Neural Networks-Tensor Decomposition (C-HiDeNN-TD): a scalable surrogate modeling approach for large-scale physical systems (2409.00329v1)

Published 31 Aug 2024 in cs.CE

Abstract: A common trend in simulation-driven engineering applications is the ever-increasing size and complexity of the problem, where classical numerical methods typically suffer from significant computational time and huge memory cost. Methods based on artificial intelligence have been extensively investigated to accelerate partial differential equations (PDE) solvers using data-driven surrogates. However, most data-driven surrogates require an extremely large amount of training data. In this paper, we propose the Convolutional Hierarchical Deep Learning Neural Network-Tensor Decomposition (C-HiDeNN-TD) method, which can directly obtain surrogate models by solving large-scale space-time PDE without generating any offline training data. We compare the performance of the proposed method against classical numerical methods for extremely large-scale systems.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.