Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Benchmarking the Performance of Large Language Models on the Cerebras Wafer Scale Engine (2409.00287v2)

Published 30 Aug 2024 in cs.DC

Abstract: Transformer based LLMs have recently reached state of the art performance in NLP and Computer Vision (CV) domains. LLMs use the Multi-Headed Self-Attention (MHSA) mechanism to capture long-range global attention relationships among input words or image patches, drastically improving its performance over prior deep learning approaches. In this paper, we evaluate the performance of LLMs on the Cerebras Wafer Scale Engine (WSE). Cerebras WSE is a high performance computing system with 2.6 trillion transistors, 850,000 cores and 40 GB on-chip memory. Cerebras WSE's Sparse Linear Algebra Compute (SLAC) cores eliminates multiply-by-zeros operations and its 40 GB of on-chip memory is uniformly distributed among SLAC cores, enabling fast local access to model parameters. Moreover, Cerebras software configures routing between cores at runtime, optimizing communication overhead among cores. As LLMs are becoming more commonly used, new hardware architectures are needed to accelerate LLMs training and inference. We benchmark the effectiveness of this hardware architecture at accelerating LLMs training and inference. Additionally, we analyze if Cerebras WSE can scale the memory-wall associated with traditionally memory-bound compute tasks using its 20 PB/s high bandwidth memory. Furthermore, we examine the performance scalability of Cerebras WSE through a roofline model. By plotting performance metrics against computational intensity, we aim to assess their effectiveness at handling high compute-intensive LLMs training and inference tasks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.