Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Nonparametric Density Estimation for Data Scattered on Irregular Spatial Domains: A Likelihood-Based Approach Using Bivariate Penalized Spline Smoothing (2408.16963v2)

Published 30 Aug 2024 in stat.ME

Abstract: Accurately estimating data density is crucial for making informed decisions and modeling in various fields. This paper presents a novel nonparametric density estimation procedure that utilizes bivariate penalized spline smoothing over triangulation for data scattered over irregular spatial domains. The approach is likelihood-based with a regularization term that addresses the roughness of the logarithm of density based on a second-order differential operator. The proposed method offers greater efficiency and flexibility in estimating density over complex domains and has been theoretically supported by establishing the asymptotic convergence rate under mild natural conditions. Through extensive simulation studies and a real-world application that analyzes motor vehicle theft data from Portland City, Oregon, we demonstrate the advantages of the proposed method over existing techniques detailed in the literature.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.