Mosco convergence of gradient forms with non-convex potentials II (2408.15437v1)
Abstract: This article provides a scaling limit for a family of skew interacting Brownian motions in the context of mesoscopic interface models. Let $d\in\mathbb N$, $y_1,\dots,y_M\in\mathbb R$ and $f\in C_b(\mathbb R)$ be fixed. For each $N\in\mathbb N$ we consider a $k_N$-dimensional, skew reflecting distorted Brownian motion $(X{N,i}t){i=1,\dots,k_N}$, $t\geq 0$, and investigate the scaling limits for $N\to\infty$. The drift includes skew reflections at height levels $\tilde y_j:=N{1-\frac{d}{2}}y_j$ with intensities $\beta_j/Nd$ for $j=1,\dots,M$. The corresponding SDE is given by \begin{equation} d X{N,i}_t=-\big(A_N X{N}_t\big)_id t-\frac{1}{2}N{-\tfrac{d}{2}-1}\,f\big(N{\frac{d}{2}-1}X{N,i}_t\big)d t \+\sum_{j=1}M\tfrac{1-e{-\beta_j/Nd}}{1+e{-\beta_j/Nd}}d l_t{N,i, \tilde y_j} +d B_t{N,i}, \end{equation} where ${(B_t{N,i})}_{t\geq 0}$, $i=1,\dots, k_N$, are independent Brownian motions and $ l_t{N,i, \tilde y_j}$ denotes the local time of ${(X{N,i}t)}{t\geq 0}$ at $\tilde y_j$. We prove the weak convergence of the equilibrium laws of \begin{equation*} u_tN=\Lambda_N\circ X{N}_{N2t},\quad t\geq 0, \end{equation*} for $N\to\infty$, choosing suitable injective, linear maps $\Lambda_N:\mathbb R{k_N}\to {h\,|\,h:D\to\mathbb R}$. The scaling limit is a distorted Ornstein-Uhlenbeck process whose state space is the Hilbert space $H=L2(D, dz)$. We characterize a class of height maps, such that the scaling limit of the dynamic is not influenced by the particular choice of ${(\Lambda_N)}_{N\in\mathbb N}$ within that class.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.