Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Continuity bounds for quantum entropies arising from a fundamental entropic inequality (2408.15306v3)

Published 27 Aug 2024 in quant-ph, math-ph, and math.MP

Abstract: We establish a tight upper bound for the difference in von Neumann entropies between two quantum states, $\rho_1$ and $\rho_2$. This bound is expressed in terms of the von Neumann entropies of the mutually orthogonal states derived from the Jordan-Hahn decomposition of the difference operator $(\rho_1 - \rho_2)$. This yields a novel entropic inequality that implies the well-known Audenaert-Fannes (AF) inequality. In fact, it also leads to a refinement of the AF inequality. We employ this inequality to obtain a uniform continuity bound for the quantum conditional entropy of two states whose marginals on the conditioning system coincide. We additionally use it to derive a continuity bound for the quantum relative entropy in both variables. Interestingly, the fundamental entropic inequality is also valid in infinite dimensions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 4 likes.